
An effective gravity model and singularity avoidance in quantum FRW cosmologies

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 202002

(http://iopscience.iop.org/1751-8121/42/20/202002)

Download details:

IP Address: 171.66.16.154

The article was downloaded on 03/06/2010 at 07:46

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/20
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 202002 (15pp) doi:10.1088/1751-8113/42/20/202002

FAST TRACK COMMUNICATION

An effective gravity model and singularity avoidance
in quantum FRW cosmologies

Jaume Haro1 and Emilio Elizalde2,3
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Abstract
An effective formulation of gravity is discussed, which lies in between the
Wheeler–DeWitt approach and that of classical cosmology. It has the virtue of
naturally avoiding the singularity that appears in Friedman–Robertson–Walker
cosmologies. The mechanism is made explicit in specific examples, where it
is compared with the quantization provided by loop quantum cosmology. It
is argued that it is the regularization of the classical Hamiltonian, performed
in that theory, that avoids the singularity, rather than usually invoked quantum
effects. However, a deeper study of the quantum nature of geometry in that
framework should help to completely clarify the issue.

PACS numbers: 98.80.Jk, 98.80.Qc, 04.60.Ds, 04.60.Pp

1. Introduction

Classical Friedman–Robertson–Walker (FRW) cosmologies give rise to a singularity when
the strong-energy condition holds: ρ + 3p > 0, ρ being the energy density and p the
pressure [1]. A simple way to avoid this singularity is by introducing a scalar field
that breaks the strong-energy condition [2–4]. Another possibility is to consider quantum
effects due to vacuum polarization, such as that due to a massless scalar field conformally
coupled with gravity [5–7]. And still another approach is to consider quantum cosmological
perfect fluid models in Schutz’s formalism [8–10]. Here we will follow a different path,
a modified gravity quantization stemming from the Wheeler–DeWitt equation: Ĥ� = 0
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[11, 12], with Ĥ being the quantum Hamiltonian. To address the question of a possible
singularity at finite time, we consider an effective formulation given in terms of the following
Schrödinger equation (where we have chosen as time the cosmic one), with additional
conditions:

ih̄∂t�(t) = Ĥ�(t), �(t∗) = �, 〈Ĥ 〉� = 0, ‖�‖ = 1. (1)

We thus skip here, from the very beginning, the deep and fundamental question of the choice
of a time direction [13], which we plainly assume to have a physical solution.

Some basic technical details on what will be demonstrated follow below. The quantum
Hamiltonian Ĥ , obtained with the usual rules of quantum mechanics, is generically symmetric
but not self-adjoint. Von Neumann’s theorem [14, 15] allows it to be extended (sometimes
in infinitely many ways) to a self-adjoint operator. Stone’s theorem then applies, leading to
a solution valid at all time t, and, consequently, we can compute the average of the quantum
operator â corresponding to the classical scale factor a. That is, we compute the following
effective scale factor: aeff(t) ≡ 〈�(t)|â�(t)〉, where �(t) is the solution of the effective
Schrödinger equation above. It is not difficult to see that if �(t) belongs to the domain of
the operator â at any time, then the effective scale factor is always strictly positive, and we
can conclude that the singularity is avoided. Physically, the self-adjoint extension of the
Hamiltonian operators that appears in FRW cosmologies can be understood assuming that
there is an infinite barrier potential at the point a = 0, then when the effective factor scales
approach to zero, at some finite time, it bounces and grows.

However, to compute averages one usually works in the Heisenberg picture, so
˙̂A = i

h̄
[Ĥ , Â], for Â any operator involved in the calculation. But, using this formula

one turns out to obtain, at some finite time, a negative value for the average of the scalar
factor operator. Such a contradictory result can be explained by the fact that, at some finite
time, the commutator between the Hamiltonian and the operator Â is not well defined, which
invalidates the final result (physically, one can explain this taking into account that in the
Heisenberg picture the boundary conditions do not appear, i.e., the barrier potential is not
introduced and then the effective factor scale has the freedom to take all the values in R).
That is, the average of the scale factor is positive, but we do not have any method to obtain
analytic information about its behavior, because the Heisenberg picture fails to work, and
it also turns out to be impossible to obtain an explicit solution of the effective Schrödinger
equation. To this end loop quantum cosmology (LQC) will be invoked [16, 17]. In what
follows, we present a simple demonstration of the above approach and will explicitly see
how this theory avoids the singularity. It will also be shown that it is the regularization
of the classical Hamiltonian [18–20] that avoids the singularity, rather than quantum
effects.

In the first of the three appendices in the article we present a brief mathematical review
about the theory of self-adjoint extensions of symmetric operators based on Von Neumann’s
theorem. In the second one, we apply the effective formulation to the case of a barotropic fluid
where one can see clearly the physical meaning of the self-adjoint extension of a symmetric
operator. As specific examples, the dust and radiation cases are treated in detail, showing
that the self-adjoint extension of the respective Hamiltonian operators can be understood
assuming that there is an infinite potential barrier at a = 0. Finally, in the last one, we
show (resp. review) how to derive the standard quantum fields theory in curved spacetime
from the effective formulation (resp. the Wheeler–DeWitt equation), and also we obtain,
from the effective formulation, the semi-classical Einstein equation, that is, the back-reaction
one.
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2. The problem

In this section, we consider a homogeneous and isotropic gravitational field minimally coupled
to a homogeneous scalar field, the Lagrangian of which is given by [4]

L(t) = 3c2

8πG
(c2k − ȧ2)a +

1

2
φ̇2a3 − V (φ)a3, (2)

where G is Newton’s constant, and k is the three-dimensional curvature. We are interested
in the case k = 0 and V ≡ 0, previously studied in [21, 22] within the framework of LQC.
This interest comes from the fact that in the chaotic inflationary model with V = 1

2m2φ2, at
very early times before the inflationary period, one has φ̇ � V (for details, see [23]). Then
the potential can be neglected and one has ρ ∼= p. Consequently, this model gives rise to a
singularity at very early times that we want to avoid using the effective formulation described
in the introduction.

Defining the angle variable ψ by φ =
√

3c2/4πGψ, the Lagrangian becomes (lp denotes
the Planck length)

L = −γ 2

2
(ȧ2a − ψ̇2a3), with γ 2 = 3c2

4πG
= 3h̄

4πcl2
p

. (3)

Using the conjugate momenta, pa ≡ −γ 2ȧa and pψ ≡ γ 2ψ̇a3, we can write the Hamiltonian
as

H = 1

2γ 2a3

[−(apa)
2 + p2

ψ

]
. (4)

The classical dynamic equations are

ȧ = − 1

γ 2a2
apa, ˙(apa) = 3H, ψ̇ = 1

γ 2a3
pψ, ṗψ = 0, (5)

together with the constraint H = 0, that is (apa)
2 = p2

ψ . Integrating (5) we obtain the
following solution:

0 > a(t)pa(t) ≡ p∗
α, pψ;±(t) ≡ p∗

ψ,± = ±p∗
α,

a(t) = a∗
[

1 − 3p∗
α(t − t∗)

γ 2(a∗)3

]1/3

, ψ±(t) = ∓ ln
a(t)

a∗ + ψ∗.
(6)

Note that the solution (a(t), ψ±(t)) is defined in the interval (ts, +∞), where ts =
t∗ + (γ 2/3p∗

α)(a∗)3. At this time we have a(ts) = 0 and ψ±(ts) = ±∞, that is, the dynamics
is singular at t = ts . Note that we can write a(t) = a∗ [1 − (t − t∗)/(ts − t∗)]1/3 . Finally,
from equations (5) we have dln a/dψ± = ∓1 and conclude that

a = a∗ e∓(ψ±−ψ∗). (7)

2.1. Quantum dynamics

We now use the quantization rule,

gABpApB −→ −h̄2∇A∇A = − h̄2

√|g|∂A(
√

|g|gAB∂B), (8)

and obtain the quantum Hamiltonian,

Ĥ ≡ h̄2

2γ 2a3

(
a∂aa∂a − ∂2

ψ2

)
. (9)
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Introducing the operators âpa ≡ −ih̄a−1/2∂aa
3/2, p̂ψ ≡ −ih̄∂ψ, we can write Ĥ ≡

1
2γ 2 a

−3/2
[
p̂2

ψ − (âpa)
2
]
a−3/2. The dynamical equations in the Heisenberg picture are

dâ

dt
= − 1

γ 2â2
(âpa + ih̄),

d(âpa)

dt
= 3Ĥ ,

dψ̂

dt
= 1

γ 2â3
p̂ψ ,

dp̂ψ

dt
= 0,

(10)

with 〈�|�〉 ≡ ∫∞
0 da

∫
R

dψ�∗(a, ψ)a2�(a,ψ) as the inner product and operator average
〈Â〉� ≡ 〈�|Â�〉, ‖�‖ = 1.

Example 1. Consider the wavefunction (|p∗
α| = |p∗

ψ |): �(a,ψ) ≡ a−3/2

(σπ)1/2 e− ln2(a/ā)

2σ e− (ψ−ψ∗)2

2σ

e
i
h̄
(ln(a/ā)p∗

α+ψp∗
ψ ). Then: 〈â〉� = ā eσ/4 ≡ a∗, 〈ψ̂〉� = ψ∗, 〈âpa〉� = p∗

α, 〈p̂ψ 〉� = p∗
ψ and

〈Ĥ 〉� = 0.

2.2. The Wheeler–DeWitt equation

Compare at this point with the Wheeler–DeWitt equation paradigm (WDW) [11],

Ĥ� = 0 −→ (
a∂aa∂a − ∂2

ψ2

)
� = 0, (11)

with the general solution (̃a is a length constant)

�(a,ψ) = f+(ln(a/̃a) + ψ) + f−(ln(a/̃a) − ψ). (12)

The quantum version of equation (7) is �+(a, ψ) = f+(ln(a/a∗) + ψ − ψ∗),�−(a, ψ) =
f−(ln(a/a∗) − ψ + ψ∗), with f± being a function picked around 0, as, for instance,
f±(z) = e−z2/σ . From this result we see that the wave is always picked around the classical
solution, but we cannot conclude that its dynamical behavior is singular since here time does
not appear.

In order to understand the dynamics, we postulate the effective equation (1). Note
that 〈Ĥ 〉� = 0 implies 〈Ĥ 〉�(t) = 0, and ‖�‖ = 1 implies ‖�(t)‖ = 1,∀ t ∈ R.
Then, if the solution of the problem exists for all t, it is easy to prove that the effective
scalar factor, aeff(t) ≡ 〈â〉�(t), never vanishes. In fact, the condition ‖�‖ = 1 implies
‖�(t)‖ = 1, i.e.,

∫∞
0 da

∫
R

dψ a2|�(t, a, ψ)|2 = 1, and thus we have aeff(t) = 〈â〉�(t) =∫∞
0 da

∫
R

dψ a3|�(t, a, ψ)|2 �= 0.
To do the calculation, we consider the quantity 〈â3〉�(t). We have d

dt
〈â3〉�(t) =

i
h̄
〈[Ĥ , â3]〉�(t) = − 3

γ 2 〈âpa〉�(t) and d2

dt2 〈â3〉�(t) = − 3i
h̄γ 2 〈[Ĥ , âpa]〉�(t) = − 9

γ 2 〈Ĥ 〉�(t) = 0,

due to the remark above. Consequently, we obtain

〈â3〉�(t) = 〈â3〉� − 3

γ 2
〈âpa〉�(t − t∗). (13)

For the function of example 1, we get

〈â3〉�(t) = ā3e9σ/4 − 3

γ 2
p∗

α(t − t∗), (14)

and this contradicts the fact that 〈â3〉�(t) � 0,∀ t ∈ R. However, since the operator Ĥ is
symmetric and real, using von Neumann’s theorem [14, 15] it can be extended to a self-adjoint
one, and then the solution of the problem (1) exists here for any t (Stone’s theorem). From
this result, we conclude that there is a value of t for which some of the commutators [Ĥ , â3]
and/or [Ĥ , âpa] do not exist; thus the final result (14) is incorrect. The drawback of this
method is the lack of an analytic procedure to calculate the average since, in general, there is
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no explicit formula that gives information on the regular behavior of the average of the scale
factor operator. Fortunately, a useful way exists to directly analyze the singularity, namely
loop quantum cosmology. Before using it in our problem, we consider another example where
the above contradictions can easily be depicted.

Example 2. Consider now the problem,

i∂t� = −ih̄c∂x� ≡ cp̂�, ∀x ∈ [0, 2π ], �(0) = �, (15)

p̂ being the self-adjoint in the domain [15]: Dp̂ = {� absolutely continuous in [0, 2π ], ∂x� ∈
L2[0, 2π ], �(0) = �(2π)}. Let �(t) be the solution of our effective formulation (15). We
want to calculate 〈x̂〉�(t) ≡ ∫ 2π

0 x|�(t, x)|2 dx. Using [p̂, x̂] = −ih̄, we get 〈 ˙̂x〉�(t) = c, i.e.,
〈x̂〉�(t) = 〈x̂〉� +ct which is not positive ∀ t . What actually happens is that, for some t, we have
x̂�(t) /∈ Dp̂, and then p̂x̂�(t) has no sense, neither the formula 〈 ˙̂x〉�(t) = i

h̄
〈[cp̂, x̂]〉�(t). To

see this in detail, consider the initial state

�(x) =
√

3

2π2

{
x, for x ∈ [0, π ],

2π − x, for x ∈ [π, 2π ].
(16)

Fourier analysis provides the following solution of the Schrödinger equation:

�(t, x) =
√

3

2π2

{
π

2
− 4

π

∑
n∈Z

1

(2n + 1)2
cos[(2n + 1)(x − ct)]

}
. (17)

Then, at t = 0 we have x�(0, x) ∈ Dp̂ but if we choose t = π/c, we obtain x�(π/c, x)|x=0 =
0, and x�(π/c, x)|x=2π = √

6π/c, which means effectively that x�(π/c, x) �∈ Dp̂. However,
note that 〈x̂〉�(t) exists for all t ∈ R, its value being

0 < 〈x̂〉�(t) =
∫ 2π

0

3x

2π2

{
π

2
− 4

π

∑
n∈Z

1

(2n + 1)2
cos [(2n + 1)(x − ct)]

}2

dx < 2π. (18)

3. Loop quantum cosmology to the rescue

We shall now involve (a simplified version of) LQC (for a rigorous formulation, see [17, 20]),
with different variables and a different quantum space of states, adapted to make contact with
our theory above. Consider the variables p ≡ a2 and x ≡ ȧ. Their Poisson bracket is {x, p} =
8πG
3c2 = 2

γ 2 . We also consider the holonomies hj (n) ≡ e−i nιx
2c

σj = cos
(

nιx
2c

)− iσj sin
(

nιx
2c

)
[25],

where σj are the Pauli matrices, and ι is the Barbero–Immirzi parameter. We easily obtain the
following classical identity of the Ashtekar–Barbero phase space [25]:

a−1 = −ih̄

4πl2
pι

Tr
3∑

j=1

σjhj (1)
{
h−1

j (1), a
}
. (19)

To get the gravitational part of the Hamiltonian, we cannot directly use this one: Hgrav =
− 3c2

8πG
x2√p, which leads to singular classical dynamics. We may use the general formulae of

loop quantum gravity (LQG) to obtain the regularized Hamiltonian [12, 20, 22]:

Hgrav,ι ≡ − h̄2c

32π2l4
pι3

∑
i,j,k

εijk Tr
[
hi(1)hj (1)h−1

i (1)h−1
j (1)hk(1)

{
h−1

k (1), a3
}]

= −γ 2c2

2ι2
a sin2 ιx

c
, (20)

5
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which is bounded when the extrinsic curvature x/2 (a half of the velocity of the scalar factor)
diverges and approaches Hgrav for small values of x. Then, taking this regularized Hamiltonian
as the gravitational part of the full one, the last is given by [24, 25]

Hι ≡ −γ 2c2

2ι2
a sin2 ιx

c
+

1

2γ 2
a−3p2

ψ, (21)

and the dynamical equations are

ȧ = {a,Hι} = c

2ι
sin

2ιx

c
, ẋ = {x,Hι} = − 2

γ 2a4
p2

ψ. (22)

Imposing the Hamiltonian constraint Hι = 0, we obtain

ȧ2 = p2
ψ

γ 4a4

(
1 − p2

ψι2

γ 4a4c2

)
, (23)

and since pψ ≡ p∗
ψ is constant, we get the following bounce: ȧ = 0 when a =

1
γ

√
p∗

ψ ι

c
= 2lp

√
πp∗

ψ ι

3h̄ . Consequently, there is no singularity because the range of a(t) is[
2lp

√
πp∗

ψ ι

3h̄ , +∞)
,∀ t ∈ R. In fact, at earlier times the scalar factor is very big, then it

decreases, and when it arrives at the turning value it increases forever. Moreover, this solution
yields a period of inflation [26], namely, from the Friedmann equation (23): ä > 0, for

a ∈ (
2lp

√
πp∗

ψ ι

3h̄ , 2lp

√√
2πp∗

ψ ι

3h̄

)
. Finally, note that when a � lp, equation (23) coincides

with (5).
A different way to understand these features is to write equation (23) as

(
ȧ
a

)2 = 2
γ 2 ρeff,

where we have introduced the effective energy density ρeff ≡ p2
ψ

2a6

(
1 − p2

ψ ι2

γ 4a4c2

)
. Taking the

derivative, ρ̇eff = −3
(

ȧ
a

)
(ρeff + peff), where the effective pressure is peff ≡ p2

ψ

2a6

(
1 − 7p2

ψ ι2

3γ 4a4c2

)
.

But then is easy to see that the strong-energy condition, ρeff + 3peff > 0, is broken, when

the scale factor lies in the interval
(
2lp

√
πp∗

ψ ι

3h̄ , 2lp

√√
2πp∗

ψ ι

3h̄

)
, consequently, the singularity is

avoided. Moreover, for a ∈ (2lp

√
πp∗

ψ ι

3h̄ , 2lp

√√
5πp∗

ψ ι

3
√

3h̄

)
, there is a period of super-inflation, that

is, in this interval, one has peff

ρeff
< −1.

We should remark here that similar results are obtained in the case k = 1 and V ≡ 0.
Now the classical Hamiltonian is given by

H = 1

2γ 2a3

(−(apa)
2 + p2

ψ − γ 4c2a4), (24)

and the regularized one is

Hι ≡ −γ 2c2

2ι2
a

(
sin2

(
ιx

c

)
+ ι2

)
+

1

2γ 2
a−3p2

ψ. (25)

Then, using the Hamiltonian constraint, Hι = 0, it is easy to obtain the Friedmann equation

ȧ2 =
(

p2
ψ

γ 4a4
− c2

)(
1 + ι2 − p2

ψι2

γ 4a4c2

)
, (26)

and since pψ ≡ p∗
ψ is constant and ȧ2 � 0, we can deduce that a ∈ [2lp

√
πp∗

ψ ι

3h̄
√

1+ι2
, 2lp

√
πp∗

ψ

3h̄

]
,

and clearly the singularity is avoided. In this case, we have an oscillating universe.

6
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Another equivalent way to do this is to use the variable x̃ ≡ ȧ + c; then following
[29, 30], we obtain the regularized Hamiltonian,

H̃ ι ≡ −γ 2c2

2ι2
a

(
sin2

(
ι(̃x − c)

c

)
− sin2(ι) + 2ι2

)
+

1

2γ 2
a−3p2

ψ. (27)

It is clear that from this last regularized Hamiltonian the scale factor has the same behavior as
that described in equation (26).

3.1. Quantization

To quantize we perform the usual change {A,B} → − i
h̄

[Â, B̂]. Note that the system
is 4πc

ι
-periodic with respect to the variable x; thus we consider the space of 4πc

ι
-periodic

functions and introduce the inner product 〈�|�〉 ≡ ∫
R

dψ
∫ 2πc

ι

− 2πc
ι

dx �∗(x, ψ)�(x,ψ). The

completion of this space with respect to this product is the space of square-integrable functions
in
[− 2πc

ι
, 2πc

ι

]
. Note that, rigorously, the definition of the Hilbert space is more complicated:

L2(RBohr, dμBohr), where RBohr is the compactification of R, and μBohr is the Haar measure
on it [22]. However, for our purposes the Hilbert space L2

[− 2πc
ι

, 2πc
ι

]
will suffice.

We quantize the variable p as above and, using the fact that p > 0, we can define
p̂ ≡ (− 4h̄2

γ 4 ∂2
x2

)1/2
, the volume operator V̂ ≡ p̂3/2 and the scale factor â ≡ p̂1/2. The

eigenfunctions of these operators are |n〉 ≡ √
ι

4πc
e

inι
2c

x , and their eigenvalues that due to

the choice of our Hilbert space are discrete are (p̂)n = 4π
3 ι|n|l2

p, (V̂ )n = (
4π
3 ι|n|l2

p

)3/2
and

(â)n =
√

4π
3 ι|n|lp. Since the spectrum of the scale factor is discrete, we can obtain different

non-singular spectra of its inverse; for example, using equation (19),

â−1 ≡ − 1

4πl2
pι

Tr
3∑

j=1

σj ĥj (1)
[
ĥ−1

j (1), V̂ 1/3
]
, (28)

one gets

â−1|n〉 =
√

3

4πι

1

lp
(
√

|n + 1| −
√

|n − 1|)|n〉, (29)

whose eigenvalues, when n � 1, satisfy (â−1)n = 1/(â)n.
The quantization of the gravitational part of the Hamiltonian depends on the order we

fix. For instance, Ĥ grav,ι ≡ ih̄c
32π2l4

pι3

∑
i,j,k εijk Tr

[
ĥ−1

i (1)ĥ−1
j (1)ĥk(1)

[
ĥ−1

k (1), V̂
]
ĥi(1)ĥj (1)

]
gives us a self-adjoint operator, or the direct quantization of the expression − γ 2c2

2ι2
a sin2 ιx

c

yields

̂̃H grav,ι ≡ −γ 2c2

2ι2
â1/2 sin2

(
ιx

c

)
â1/2. (30)

If we use this operator (30) as the gravitational part of the full Hamiltonian, then this is given
by

̂̃Hι ≡ −γ 2c2

2ι2
â1/2 sin2

(
ιx

c

)
â1/2 +

1

2γ 2
(â−1)3p̂2

ψ, (31)

7
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and in this case the WDW equation becomes ̂̃Hι� = 0 which, expanding � as � =∑
n∈N

�n(ψ)|n〉, turns into

2
√

|n|�n − |n(n − 4)|1/4�n−4 − |n(n + 4)|1/4�n+4

+ 4(
√

|n + 1| −
√

|n − 1|)3∂2
ψ2�n = 0, n ∈ N. (32)

Summing up, the effective equation ih̄∂t� = ̂̃Hι� with the condition 〈 ̂̃Hι〉�(t) = 0 yields
an average of the scalar factor operator that has essentially the same behavior as the classical
solution of equation (23). This is due to the fact that the domain of the holonomy operators
is the whole space, so that one can safely use the Heisenberg picture in order to obtain the
quantum version of the classical equations. This gives generically small corrections to the
classical behavior.

A final remark is in order. The singularity is avoided in the classical theory after the
regularization of the Hamiltonian. Quantization of this new Hamiltonian provides then a
self-adjoint operator. It is important to realize that it is the regularization of the classical
Hamiltonian what avoids the singularity, rather than the quantum effects. This is overlooked
in some papers, where it is claimed that quantum effects are essential to avoid the big bang
singularity [22, 27, 28]. Note that, in these approximations, one already starts from the
quantum theory, and then using the quantum operators an effective Hamiltonian is obtained
[31–33] which, in fact, is in essence the Hamiltonian (21). This may be the reason why it is
plainly concluded there that quantum effects, provided by LQC, are responsible for avoiding
the big bang singularity. However, it is very possible that a deeper study of the quantum
nature of the geometry could actually resolve the singularities. But from our viewpoint, the
discrete spectrum of the factor scale operator comes naturally from the fact that the regularized
Hamiltonian is periodic. Here, with our alternative formulation we have shown, by means of
explicit examples, that this need not be the case in other situations.

4. Conclusions

We have presented an effective formulation that avoids the big bang singularity: in essence
Schrödinger’s equation with the condition that the average of the Hamiltonian operator is zero.
This is different from the Wheeler–DeWitt equation where one imposes that the Hamiltonian
operator annihilates the wavefunction, and the time arrow is yet to be selected. In our theory,
time has the same meaning as in the classical theory, and the relevant quantities are averages
of the quantum operators, as, e.g., the average of the scale factor operator—which is by
definition strictly positive—and there appears no singularity at finite time. The problem with
this effective theory is that one cannot use Heisenberg’s picture to calculate those quantities,
and since it is also impossible to explicitly solve Schrödinger’s equation, it does not seem easy
to produce an analytic formula that gives us information on the behavior of these averages.
Only numerical results look feasible at this point.

Another way to deal with the classical big bang singularity is LQC. We have considered
here a simplified version of this theory and shown that, in contradistinction to the theory
presented above, in LQC it is the regularization of the classical Hamiltonian that seems
to avoid the singularity, and not the quantum effects obtained after the quantization of the
regularized Hamiltonian.

We should finally stress that our contribution is in no way a universal procedure trying to
compete with fundamental quantizations of gravity, such as LQG or the WdW equation. It is
just an effective, intermediate approach, simple and with some good properties. It deals with

8
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particular issues only, but can be fruitfully used at an intermediate cosmological level. The
specific examples we have presented already hint toward this possibility.
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Appendix A. Self-adjoint extensions of symmetric operators

In this mathematical appendix, we present a brief review of the theory of the self-adjoint
extensions of symmetric operators. Let Â be a linear operator defined on a dense subset DÂ

of a separable Hilbert space H. The adjoint Â† of Â is defined on those vectors � ∈ H
for which there exist �̃ ∈ H such that 〈�|Â�〉 = 〈�̃|�〉∀� ∈ DÂ, and Â† is defined
on such � as Â†� ≡ �̃. The graph of an operator Â is a subset of H

⊕
H, defined by

GÂ ≡ {(�, Â�);� ∈ DÂ}, and Â is called closed, which is written as ¯̂A = Â, if its graph is a
closed set. An extension of an operator Â, namely Âext, is an operator that satisfies DÂ ⊂ DÂext

and Âext� = Â�∀� ∈ DÂ.
An operator Â is symmetric if 〈�|Â�〉 = 〈Â�|�〉∀�,� ∈ DÂ. Then, a symmetric

operator Â always admits a closure (a minimal closed extension), which is its double adjoint,
i.e., ¯̂A = Â††. The adjoint of a symmetric operator Â is always a closed extension of it, and it
is self-adjoint when DÂ = DÂ† . The deficiency subspaces N± of the operator Â are defined
by

N± = {� ∈ DÂ† , Â
†� = z±�,±Im(z±) > 0}, (A.1)

and the deficiency indices n± of Â are its dimensions. Note that these two definitions do not
depend on the values of z±. The following important theorem holds.

Theorem 1 (Von Neumann). For a closed symmetric operator Â with deficiency indices n±
there are three possibilities:

(a) If n+ = n− = 0, then Â is self-adjoint.
(b) If n+ = n− = n � 1, then Â has infinitely many self-adjoint extensions parametrized by

an unitary n×n matrix. Each unitary matrix Un : N+ → N−, characterizes a self-adjoint
extension ÂUn

as the restriction of Â† to the domain

DÂUn
= {

� + �z+ + Un�z+;� ∈ DÂ,�z+ ∈ N+
}
. (A.2)

(c) If n+ �= n−, then Â has no self-adjoint extensions.

Appendix B. Effective formulation for a barotropic perfect fluid

In this appendix, we apply our effective formulation to the case of a barotropic perfect fluid
with the equation of state p = ωρ. The Lagrangian of the system in the flat case (k = 0) is

L = −γ 2

2
ȧ2a − ρ(a)a3. (B.1)

9
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The momentum and the Hamiltonian are respectively pa = −γ 2ȧa and H = − 1
2γ 2a

p2
a +

ρ(a)a3. Using the conservation equation ρ̇ = −3 ȧ
a
(ρ + p) we have ρ(a) = ρ0 (a/a0)

−3(ω+1),
then the dynamical equations become

ȧ = − pa

γ 2a
; ṗa = − p2

a

2γ 2a2
+ 3ωρ(a)a2, (B.2)

with the constraint H = 0. The quantization rule (8) gives us the following Hamiltonian
operator:

Ĥ = h̄2

2γ 2a
∂2
a + ρ(a)a3, (B.3)

which is symmetric with respect to the inner product 〈�|�〉 = ∫∞
0 da a�∗(a)�(a) of the

Hilbert space L2((0,∞), ada).
To apply the theory presented in appendix A, first we consider the case ω = 0 (dust

matter), whose Hamiltonian is Ĥ = h̄2

2γ 2a
∂2
a + ρ0a

3
0 . To study the self-adjoint extensions

of this operator we need to determine the deficiency subspaces N±, that is, we must solve
the equation Ĥ� = z±� with ‖�‖ < ∞. Since the definitions of these spaces do not
depend on z±, we choose, z± = ±iρ0a

3
0 . Then, the solutions of Ĥ� = ±iρ0a

3
0� are

Airy functions �1,± ≡ Ai(β±a) and �2,± ≡ Bi(β±a), where β± ≡ ( 4γ 2ρ0a
3
0

h̄2

)1/3
e±iπ/4

[34]. However, only �1,± has finite norm, and then both spaces have dimension 1. Von
Neumann’s theorem tells us that Ĥ has infinitely many self-adjoint extensions, namely
Ĥ SA, parametrized by a unitary 1 × 1 matrix, i.e., by eα being α ∈ R. To obtain an
explicit expression of the domain of these self-adjoint extensions we must impose [14, 35]
〈Ĥ SA(�+ + eiα�−)|�〉 = 〈�+ + eiα�−|Ĥ SA�〉∀� ∈ DĤ SA

. It is not difficult to show that
this condition is fulfilled when

�(0)

� ′(0)
= Ai(0)

Ai′(0)|β+|
1

1 + tan(α/2)
≡ r, with r ∈ R. (B.4)

That is, for different values of r we obtain different self-adjoint extensions. Here a very
natural extension is obtained by choosing r = 0, that is, imposing �(0) = 0. Physically, this
is equivalent to assuming that at a = 0 there is an infinite potential barrier (in the same way
as in non-relativistic one-dimensional barrier problems), and then the existence of a solution
at any time is guaranteed because, when the scale factor decreases to zero, at some finite time,
the potential barrier forces it to grow. Moreover, this assumption explains why the Heisenberg
picture fails to work, because in the Heisenberg picture the boundary conditions do not appear,
and the effective scale factor has the freedom to take all values in R, in particular, 0 or negative
values. We can conclude that if we want to work in the Heisenberg picture, we must introduce
some kind of potential barriers that can prevent the effective scalar factor from taking negative
values.

Once we have obtained a self-adjoint extension we apply the effective formulation (1) to
the problem

ih̄∂t�(t) = h̄2

2γ 2a
∂2
a�(t) + ρ0a

3
0�(t), (B.5)

with the additional conditions �(t∗) = �, 〈Ĥ SA〉� = 0, ‖�‖ = 1, that gives us an strongly
continuous unitary one-parameter group defined on L2((0,∞), ada) (Stone’s theorem),
namely e− i

h̄
Ĥ SAt . The solution of our problem can be written as �(t) = e− i

h̄
Ĥ SA(t−t∗)� for all

� ∈ DĤ SA
satisfying 〈Ĥ SA〉� = 0 and ‖�‖ = 1. As an example of the initial condition, if

10
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r = 0, one can take

�(a) ≡ a−1

(σπ)1/4
e− ln2(a/ā)

2σ e
i
h̄
(ln(a/ā)p∗),

p∗ = −
√

2ρ0(a0ā)3γ 2 e− 9
4 σ − h̄2

(
25

4
+

1

2σ

)
.

(B.6)

For this initial state, the effective scale factor, aeff(t) = 〈â〉�(t), grows forever for t > t∗ in a
similar way to the classical one (the classical limit holds far of the turning point a = 0). For
t < t∗ the effective scale factor decreases to zero, but at some finite time it bounces, due to
the potential barrier, and then it grows to infinity.

Finally, we study the case ω = 1/3 (radiation). The Hamiltonian is Ĥ = h̄2

2γ 2a
∂2
a + ρ0a

4
0

a
,

and the solutions of the equation Ĥ� = ±iρ0a
3
0� are Airy functions �1,± ≡ Ai(β±(a ± ia0))

and �2,± ≡ Bi(β±(a ± ia0)), where β± ≡ ( 2γ 2ρ0a
3
0

h̄2

)1/3
e±iπ/6. In this case, the dimension

of both deficiency subspaces is 1; then as in the dust matter case, Ĥ has infinitely many
self-adjoint extensions parametrized by a unitary 1 × 1 matrix, and the self-adjoint extensions
are determined, once again, by the boundary condition �(0) = r� ′(0), with r ∈ R. Now, an
initial condition for our effective formulation that exhibits the same behavior as above for the
effective scale factor is given by the function

�(a) ≡ a−1

(σπ)1/4
e− ln2(a/ā)

2σ e
i
h̄
(ln(a/ā)p∗),

p∗ = −
√

2ρ0
(
a2

0 ā
)2

γ 2 e−2σ − h̄2

(
25

4
+

1

2σ

)
.

(B.7)

The following remark is in order. When the three-dimensional curvature is positive
(k = 1), the Hamiltonian of the system is H = − 1

2γ 2a
p2

a +ρ(a)a3 − 1
2γ 2c2a. When ω > −1/3

the Hamiltonian constraint restricts the value of the scalar factor to the interval (0, A) with

A = (
2ρ0a

3(ω+1)
0 /(cγ )2

) 1
3ω+1 , and this tells us that, for the Hilbert space, we must take the space

L2 ((0, A), ada). Now for ω � 1, a = 0 is a regular singular point of the ordinary differential
equation Ĥ� = z±�, then applying the Frobenius method we can deduce that there exist two
independent solutions of the differential equation; consequently, both deficiency indices are
2, because the domain (0, A) is finite. Then, the self-adjoint extensions are parametrized by a
2 × 2 unitary matrix, and the most natural boundary condition is to assume that wavefunctions
vanish at two boundary points. Physically, this means that the scale factor is confined in a very
deep potential well, and we have an oscillating universe whose effective scalar factor never
vanishes.

B.1. An analytic solution

We consider the dust matter case (ω = 0), and we use the notation

C ≡ ρ0a
3
0, K ≡ h̄2

2γ 2
. (B.8)

We take the part of the spectrum, with the eigenvalue E, of the Hamiltonian operator which
satisfies C − E > 0. Then using formula 9.15.1 of [34], one obtains the following
eigenfunction: φE(a) = √

aJ 1
3

(
2

3
√

K

√
C − Ea3/2

)
, where J 1

3
denotes the Bessel function

of the first kind.
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A solution of the Schrödinger equation is given by

�(a, t) = B

∫ C

−∞
dE e−i Et

h̄ F (E)φE(a), (B.9)

where B is a normalization constant. To obtain an analytic expression for the wavefunction
we choose, in the same way as in [9], F(E) ≡ 1

2 (C − E)1/6 e− C−E
δ , where ν and δ are some

real, positive constants. Making the change of the variable r2 ≡ C − E and using equation
11.4.29 of [34], one gets

�(a, t) = B

2.31/3.K1/6
a

(
1

δ
− i

t

h̄

)−4/3

e
− a3

9K( 1
δ

−i t
h̄

) e−i Ct
h̄ . (B.10)

Now we impose the normalization of the wavefunction, i.e. ‖�(0)‖ = 1, to obtain the relation

3K

210/3
δ4/3|B|2�(4/3) = 1, (B.11)

where � denotes Euler’s gamma function. Finally, we have to impose 〈Ĥ 〉�(0) = 0, and thus
get

3

16

δ7/3

21/3
|B|2�(1/3) = C/K. (B.12)

Solving these two equations one has that δ = 2C
3 ; that is, we have obtained a solution of

our effective formulation given by (B.10). With this solution it is easy to obtain

aeff(t) =
(

9Kδ

2

)1/3 ( 1

δ2
+

t2

h̄2

)1/3
�(5/3)

�(4/3)
, (B.13)

which shows that, for large values of |t |, the behavior is aeff(t) ∝ t2/3, as in the classical case,

and it also shows that the universe bounces at t = 0 with a scale factor aeff(0) ∝ lp
(mpc2

ρ0a
3
0

)1/3
,mp

being the Planck mass. Finally, the average of the energy density is given by

〈ρ̂〉�(t) = K−1

(
1

δ2
+

t2

h̄2

)−1

. (B.14)

Appendix C. QFT in curved spacetime from the effective formulation

For the flat FRW universe, the action that describes a massive scalar field conformally coupled
with gravity in the presence of a barotropic fluid is

S =
∫

R

dt

∫
[0,L]3

d�x
[
−γ 2

2
ȧ2a − ρ0 (a/a0)

−3(ω+1) a3 + a3Lφ

]
, (C.1)

with Lφ = 1
2h̄c3 φ̇

2 − 1
2h̄ca2 (∇φ)2 − m2c

2h̄3 φ2 − 1
12h̄c3 R

2φ2, where R = 6
a2 (ȧ

2 + aä) is the scalar
curvature. (Note that in this appendix φ has dimensions of energy.) Integrating with respect

to �x and expanding φ as a Fourier series
(
φ = ∑

�k∈Z
3 φ�k e2π i �k.�x

L

)
, one obtains S = ∫

R
L(t) dt ,

with

L(t) = L3

⎡⎣−γ 2

2
ȧ2a − ρ0 (a/a0)

−3(ω+1) a3 + a3
∑
�k∈Z

3

Lφ�k

⎤⎦ , (C.2)

12



J. Phys. A: Math. Theor. 42 (2009) 202002 Fast Track Communication

where Lφ�k = 1
2h̄c3 φ̇

2
�k − 1

2h̄ca2
4π2|�k|2

L2 φ2
�k − m2c

2h̄3 φ2
�k − 1

12h̄c3 R
2φ2

�k . Using the conformal time

dη ≡ ctp
a

dt (tp being the Planck time) and defining the function ψ�k =
√

4πtp
3h̄

a
c
φ�k , we obtain

L(t) dt ≡ 3L3

4π
L̃(η) dη, with

L̃(η) = − h̄

2tp

(
a′

c

)2

− ρ̃0 (a/a0)
−3(ω+1) a4

lp

+
1

2

∑
�k∈Z

3

(
(ψ ′)2

�k − 1

t2
p

[
4π2|�k|2

L2
+

(
a

lc

)2
]

ψ2
�k

)
, (C.3)

where we have introduced the Compton wavelength lc ≡ h̄
mc

and defined ρ̃0 = 4π
3 ρ0. Note

that in this Lagrangian we have suppressed the terms − 3
8π

(
a′
a
ψ2

�k
)′

.

The conjugate momenta are pa = − h̄
lp

a′
c
, pψ�k = ψ ′

�k , and the Hamiltonian is given by

H̃ (η) = − 1

2mp

p2
a + U(a) +

1

2

∑
�k∈Z

3

(
p2

ψ�k
+ ω2

�k(a)ψ2
�k
)
, (C.4)

where mp is the Planck mass, and

U(a) ≡ ρ̃0 (a/a0)
−3(ω+1) a4

lp
, ω2

�k(a) ≡ 1

t2
p

[
4π2|�k|2

L2
+

(
a

lc

)2
]

. (C.5)

The quantum theory is obtained by doing the replacement pa −→ −ih̄∂a and pψ�k −→ −ih̄∂ψ�k .
Then, the quantum Hamiltonian is given by

ˆ̃H = h̄2

2mp

∂2
a2 + U(a) + Ĥm(a, ψ), (C.6)

where the matter Hamiltonian is Ĥm(a, ψ) = ∑
�k∈Z

3

(
h̄ω�kÂ

†
�kÂ�k + 1

2h̄ω�k
)
, and where we have

introduced the creation and annihilation operators

Â
†
�k ≡ 1√

2h̄ω�k

(−h̄∂ψ�k + ω�kψ�k
)
, Â�k ≡ 1√

2h̄ω�k

(
h̄∂ψ�k + ω�kψ�k

)
. (C.7)

Now, we show how one can obtain the corresponding QFT in curved spacetime from
the WDW equation. If we consider the matter field as a small perturbation, we look for the
solutions of the WDW equation with the form �(a,ψ) = �(a)χ(a,ψ). After substitution in
the WDW equation, we get[

h̄2

2mp

∂2
a2� + U(a)�

]
χ + �

h̄2

2mp

∂2
a2χ +

h̄2

mp

∂a�∂aχ + �Ĥmχ = 0. (C.8)

We assume that � is the solution of the equation

− h̄2

2mp

∂2
a2� − U(a)� = 0, (C.9)

and we make the change � = e− i
h̄
S ; then we obtain the system⎧⎪⎪⎪⎨⎪⎪⎪⎩

(∂aS)2

2mp

− U(a) +
ih̄

2mp

∂2
a2S = 0

h̄2

2mp

∂2
a2χ − ih̄

∂aS

mp

∂aχ + Ĥmχ = 0.

(C.10)
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To solve this set of equations, we neglect (following Rubakov [36]) the second derivative with
respect to a. Then we obtain the new system,⎧⎪⎪⎪⎨⎪⎪⎪⎩

(∂aS)2

2mp

− U(a) = 0

−ih̄
∂aS

mp

∂aχ + Ĥmχ = 0.

(C.11)

The first equation is the classical Hamilton–Jacobi equation, and the second one is the quantum
Schrödinger equation that can be solved choosing as the solution of the Hamilton–Jacobi
equation S(a) = ∫ a

0

√
2mpU(a) da, and introducing the conformal time da

dτ
≡ ∂aS

mp
. Then the

Schrödinger equation becomes ih̄∂τχ = Ĥm(a(τ ), ψ)χ .
Finally, we illustrate the procedure to obtain the QFT in curved spacetime from the

effective equation ih̄∂η� = ˆ̃H�. Assuming that the matter field is a small perturbation, we
look for the solutions of the form �(a,ψ; η) = �(a; η)χ(ψ; η), where � is the solution of
the equation

ih̄∂η� = h̄2

2mp

∂2
a2� + U(a)�, (C.12)

and we assume that � is a function concentrated around a classical solution, namely ac(η), of
the equation

− 1

2mp

p2
a + U(a) = 0. (C.13)

By inserting � in the effective equation, one obtains �ih̄∂ηχ = �Ĥm(a,ψ)χ , and since
� is concentrated around the classical solution, one can approximate �Ĥm(a,ψ) by
�Ĥm(ac(η), ψ) and then obtains ih̄∂ηχ = Ĥm(ac(η), ψ)χ .

We end with a last, interesting remark, namely from the effective formulation, that it is
not difficult to obtain the semi-classical Einstein equations. In fact, starting with the condition

〈 ˆ̃
H 〉� = 0, if we take the wavefunction above (now picked around ac +δac), one approximately

obtains

− 1

2mp

p2
ac+δac

+ U(ac + δac) + 〈Ĥm(ac(η) + δac(η), ψ)〉χ,ren = 0, (C.14)

where the quantity 〈Ĥm(ac(η) + δac(η), ψ)〉χ has been renormalized. Since ac is the solution
of equation (C.13), one also obtains, in the linear approximation, the following back-reaction
equation:

− h̄

clp
a′

c(δac)
′ + U ′(ac)δac + 〈Ĥm(ac(η), ψ)〉χ,ren = 0. (C.15)

Finally, observe that the derivation of the semi-classical Einstein equation from the WDW one
is not a completely clear case (see, e.g., [37]).
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